Lesson Outline

LESSON 2

Understan	dina	Inher	itance
onacistan	ang		ICMIICC

A. What controls traits?

- Inside each cell is a nucleus that contains threadlike structures called ______.
- **2.** Mendel's factors are parts of chromosomes, and each cell in the offspring contains chromosomes from both ______.
- **3.** A(n) ______ is a section on a chromosome that has genetic information for one trait.
- **4.** The different forms of a gene are called ______.
- **5.** Geneticists refer to how a trait appears, or is expressed, as the trait's ______.
- **6.** The two alleles that control the phenotype of a trait are called the
 - trait's ______.
 - a. In genetics, ______ letters represent dominant alleles, and

_____ letters represent recessive alleles.

- **b.** When two alleles of a gene are the same, its genotype is ______.
- **c.** If two alleles of a gene are different, its genotype is _____
- **B.** Modeling Inheritance
 - **1.** In a situation based on chance, such as flipping a coin, the chance of getting a certain outcome can be represented by a(n).
 - a certain outcome can be represented by a(n) ______ such as 50:50, or 1:1.
 - **2.** A(n) ______ is a model that is used to predict possible genotypes and phenotypes of offspring.
 - **a.** To create a Punnett square, you need to know the ______ of both parents.
 - **b.** If you count large numbers of ______ from a particular cross, the overall ratio will be close to the ratio predicted by a Punnett square.
 - **3.** A(n) ______ is a diagram that shows phenotypes of genetically related family members. It also gives clues about their ______.

Lesson Outline continued

- **C.** Complex Patterns of Inheritance
 - _____ when the offspring's phenotype is a blend 1. Alleles show _____ of the parents' phenotypes.
 - **2.** Alleles show ______ when both alleles can be observed in a phenotype.
 - 3. Unlike the genes in Mendel's pea plants, some genes have _____ alleles.
 - **4.** ABO _______ type is a trait that is determined by multiple alleles.
 - _____ occurs when multiple genes determine the phenotype 5. of a trait.
 - **6.** Human eye _______ is an example of polygenic inheritance.
- **D.** Genes and the Environment
 - **1.** ______ are not the only factors that can affect phenotypes.
 - An organism's _____ can also affect its phenotype.
 - **2.** The flower color of one type of hydrangea is determined by the

______ in which the hydrangea grows.

3. ______ choices can affect a person's phenotype.

LESSON 3

Lesson Outline

DNA and Genetics

A. The Structure of DNA

- **1.** Genes provide ______ for a cell to assemble molecules that express traits such as eye color or seed shape.
- **2.** Chromosomes are made of proteins and deoxyribonucleic acid, or

_____, which is an organism's genetic material.

- **3.** Strands of DNA in a chromosome are tightly ______ like a telephone cord.
- 4. The work of several scientists revealed that DNA is shaped like a twisted ladder, or a(n) ______.
- 5. DNA is made of ______, which are molecules made of a nitrogen base, a sugar, and a phosphate group.
- **6.** There are four ______ bases—adenine (A), cytosine (C), thymine (T), and guanine (G).
- 7. _____ copies a DNA molecule to make another DNA

molecule. It produces two ______ strands of DNA.

B. Making Proteins

- **1.** The DNA of each cell carries a complete set of genes that provides instructions for making all the ______ a cell requires.
- **2.** Segments of DNA that are not parts of genes are often called

_____ DNA.

3. Ribonucleic acid, or ______, is a type of nucleic acid that carries the code for making proteins from the nucleus to the cytoplasm.

a. Like DNA, RNA is made of ______.

b. Unlike DNA, RNA is single-stranded and has the sugar

_____. It has the nitrogenous base

- _____ instead of thymine.
- **4.** The process of making mRNA from DNA is _____
- 5. The three types of RNA are transfer RNA, ribosomal RNA, and

_____ RNA.

6. The process of making a protein from RNA is called ______

Lesson Outline continued

7. The order of the nitrogen bases in mRNA determines the order of the

_____ in a protein.

- 8. Each series of three nitrogen bases on mRNA is called
 - a(n) ______.
 - a. Most codons code for _____
 - **b.** One of the codons codes for an amino acid that is at the

_____ of a protein. This codon signals that

______ should start. Three of the codons do not code for

any ______. Instead, they code for the

_____ of the protein.

C. Mutations

- **1.** A change in the nucleotide sequence of a gene is a(n) ______.
- 2. Mutations can be triggered by exposure to X-rays, _____ light, radioactive materials, and some kinds of chemicals.
- **3.** Types of DNA mutations include deletion mutations, _____ mutations, and substitution mutations.
- 4. Each type of mutation changes the sequence of nitrogen base pairs, which can cause a gene to code for a different ______ than a normal gene.
- **5.** Because mutations can change proteins, they can change _____.
- **6.** Mutations can have ________ effects, positive effects, or no effect on traits.